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a b s t r a c t 

Manifold or local geometry of samples have been recognized as a powerful tool in ma- 

chine learning areas, especially in the graph-based semi-supervised learning (GSSL) prob- 

lems. Over recent decades, plenty of manifold assumption-based SSL algorithms (MSSL) 

have been proposed including graph embedding and graph regularization models, where 

the objective is to utilize the local geometry of data distributions. One of most representa- 

tive MSSL approaches is graph convolutional networks (GCN), which effectively generalizes 

the convolutional neural networks to deal with the graphs with the arbitrary structures 

by constructing and fusing the Laplacian-based structure information. However, the null 

space of the Laplacian remains unchanged along the underlying manifold, it causes the 

poor extrapolating ability of the model. In this paper, we introduce a variant of GCN, i.e. 

Hessian graph convolutional networks (HesGCN). In particularly, we get a more efficient 

convolution layer rule by optimizing the one-order spectral graph Hessian convolutions. In 

addition, the spectral graph Hessian convolutions is a combination of the Hessian matrix 

and the spectral graph convolutions. Hessian gets a richer null space by the existence of 

its two-order derivatives, which can describe the intrinsic local geometry structure of data 

accurately. Thus, HesGCN can learn more efficient data features by fusing the original fea- 

ture information with its structure information based on Hessian. We conduct abundant 

experiments on four public datasets. Extensive experiment results validate the superiority 

of our proposed HesGCN compared with many state-of-the-art methods. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

With the rapid development of the computer network technology and the diversification of obtaining data methods, the

information that people can obtain is growing rapidly in the form of an index. How to effectively utilize these massive

data to accelerate the development of social productive force is one of the common challenges for global researchers and

technical experts at present. Semi-supervised learning (SSL) [1–4] is an important sub-field in machine learning and plays a

key role in modern intelligent technology. 
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Currently, the graph-based semi-supervised learning (GSSL) [5–8] is the mainstream method in the SSL. In this field,

GSSL mainly uses the graph to describe the space structure of data. Under the framework of the graph theory [9–12] ,

it can construct a model with excellent performance and generalization ability on the data with missing a lot of label

information. In GSSL, how to better preserve the manifold or local geometry structure of samples is extremely important.

The manifold assumption reflects the local smoothness of the discriminant function, i.e. the samples in the same local

neighborhood should be similar. Under this assumption, the role of the massive unlabeled samples is to more accurate

describe the distribution characteristics of the local neighborhood, so that the discriminant function fits better. Manifold

assumption can be easily applied to the GSSL algorithms. In the past few decades, many manifold assumption-based SSL

methods have been successfully applied to the computer vision [13–16] and machine learning areas [17–20] . 

A large number of manifold assumption-based SSL (MSSL) algorithms have been proposed and have been divided into

two parts, i.e. methods based on the graph regularization or graph embedding. 

In the graph regularization methods of MSSL, it utilizes the local geometry structure of all unlabeled and labeled samples

to increase the generalization ability of the training model. Zhu et al. [4] proposed a label propagation (LP) algorithm,

i.e. it first used the relationships between the samples to establish a complete graph model, and then predicted the label

information of the unlabeled nodes from the label information of the labeled nodes. Belkin et al. [21] exploited the manifold

structure of the data probability distributions and took it as an additional regularization term of the loss function, which

is used to control the complexity of data distributions. Weston et al. [22] generalized the non-linear embedding algorithms

that applied for the shallow SSL to the deep-layer networks, which can be used for the regularization term or the network

architectures. 

Graph embedding is a process of mapping the graph structured data (high-dimensional dense matrix) into the low-

dimensional dense vector, which aims to solve the problem that graph structured data is difficult to input into the machine

learning algorithms efficiently. Perozzi et al. [23] took the sequence of the nodes obtained by random walk as a sentence,

and then obtained the local information of the network from the truncated random walk sequence, which can learn the

potential representation of the nodes through the local information. Wang et al. [24] compared the edge generated by the

generator (the negative sample of the generator) with the observable edge of the networks (the positive sample of the

discriminator), i.e. the trained generator approximated the first-order information of the networks. Hamilton et al. [25] used

an inductive method to compute the node representations, i.e. the model first extracted a fixed number of nodes from the

neighbor nodes of each node, and then used a specific way to fuse the information of these neighbor nodes. 

Because the traditional discrete convolution cannot maintain the translation invariance of the non-Euclidean data, tradi-

tional convolutional neural networks is unable to process these data. However, there exists a large number of graph struc-

tured data in real life. In the past year, a novel graph structured data representation learning method has obtained more and

more attentions of the researchers, i.e. GCN [26] , which aimed to extract the spatial features of graph structured data in the

spectral domain. Kipf and Welling [26] obtained the sample structure information based on the graph Laplacian by the one-

order approximation of spectral graph filter. And then, it made a fusion for original feature information and the structure

information of the samples by the convolution operation. Finally, it can get the richer sample features. (GCN only utilized

the structure information between each node and its direct neighbours). Fu et al. [27] utilized the spectral graph filter with

two-order polynomials to capture the direct and indirect relationships between nodes. Yadati et al. [28] used hypergraph

Laplacian to describe the complex space structure relationships between different nodes, not the single pairwise connection

relationships. However, due to the null space of the Laplacian is a constant function about geodesic distance, it causes the

poor extrapolation ability for unseen data [29] . In other words, GCN cannot learn more representative data features because

of the lack of richer structure information. 

To overcome the above-mentioned issue, we propose the Hessian graph convolutional networks (HesGCN) for the graph

structured data representation and classification problem. We use the Hessian [30–32] matrix to describe the manifold

distribution of the nodes. And then, we can get the spectral graph Hessian convolutions by applying it to the spectral con-

volutions on graphs. Finally, we build a deep-layer HesGCN though the optimized convolution layer rule for semi-supervised

classification. Because the linear relationships between the null space of the Hessian and geodesic distance function, Hes-

sian can more accurate preserve the local manifold distribution information of the data [33] . HesGCN can improve the

semi-supervised classification results effectively in the case of fewer labeled samples by the convolution of input sample

features and structure information based on Hessian. We compare the HesGCN with the GCN to demonstrate the effective-

ness of the HesGCN. Extensive experiment results on the Citeseer, Cora, Pubmed and NELL datasets verify the performance

of the HesGCN. 

The contribution of this paper can be summarized as the following some folds: 

(1) By the effective combination of the graph Hessian matrix and spectral graph convolutions, this paper proposes a spec-

tral graph Hessian convolutions to address the issue that graph convolutional networks (GCN) fails to better preserve

and utilize the local geometry structure relationships between samples. 

(2) This paper further acquires a novel form of the convolution layer rule via the optimization of one-order approximation

of spectral graph Hessian convolutions. 

(3) To evaluate the semi-supervised classification performance of the proposed Hessian graph convolutional networks
(HesGCN), this paper conducts extensive experiments on the citation networks datasets. 
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Table 1 

Some important mathematic notations. 

Notation Description 

M The sub-manifold of the M -dimensional data in R d 

C ∞ ( M ) The set of smooth functions about M 

S �( f ) Laplacian regularizer 

S Hess ( f ) Hessian regularizer 

X The set of N samples: X = { x i } n i =1 

d V ( x ) The natural volume element 

N s The null space of S �( f ) : N s = { f ∈ C ∞ (M) | S( f ) = 0 } 
f A function f : M → R with f ∈ C ∞ ( M ) 

g θ Spectral graph filter 

θ or W 

( L ) Filter parameters or weight matrix of each layer 

L Graph Laplacian: L = I N − D −
1 
2 AD −

1 
2 with D ii = 

∑ 

j A i j 

Hes Graph Hessian 

A Local geometry relationships between samples 

λmax The largest eigenvalue of matrix 

H (L +1) The extracted sample features of each layer −→ 

L 
−→ 

L = 

2 
λmax 

L − I N −→ 

A 
−→ 

A = A + I N 
T K ( x ) T 0 (x ) = I N , T 1 (x ) = x, T k (x ) = 2 xT k −1 (x ) − T k −2 (x ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rest of this paper is organized as follows. Section 2 reviews the related works. Sections 3 and 4 describe the proposed

HesGCN algorithm in detail. The experimental results are discussed and analyzed in Section 5 , followed by the conclusion

in Section 6 . 

2. Realted works 

In this section, we first give a brief introduction of the null space description of the Hessian matrix. And then, we briefly

summarize the basic terms and concepts of GCN [26] . To better understand this paper for readers, we give some important

mathematic notations in Table 1 . 

2.1. The null space description of the Hessian matrix 

Let M denotes the sub-manifold of the M -dimensional data in R d , which also is known as the Euclidean space. In addition,

we denote the C ∞ ( M ) as the set of smooth functions about M . Suppose X is a set of N samples X = { x i } n i =1 
. The definition of

the Laplacian regularizer S �( f ) is as follows [29,34] : 

S �( f ) = 

∫ 
M 

‖ � f‖ 

2 d V (x ) (1) 

Here, d V ( x ) represents the natural volume element [35] . f is a real-valued function, i.e. f : M → R with f ∈ C ∞ ( M ). How-

ever, these are only the constant functions about M for the null space N s of the Laplacian regularizer S �( f ) , i.e. N s = { f ∈
C ∞ (M) | S( f ) = 0 } . Because of all the functions meet the condition S( f ) = 0 , thus the functions are not penalized. In addition,

the S : C ∞ ( M ) → R is the regularization function. 

To solve the above-mentioned limitation of the Laplacian regularizer S �( f ) , a new method has been proposed, i.e. Hes-

sian regularizer S Hess ( f ). It can be defined as the following expression: 

S Hess ( f ) = 

∫ 
M 

m ∑ 

r,s =1 

(
∂ 2 f 

∂ x γ ∂ x s 

)2 

d V (x ) (2) 

Obviously, from the definition, we can see that, the Hessian regularizer S Hess ( f ) does the second covariant derivative on f .

In addition, Eells and Lemaire [33] has been given the proof process of the following proposition. From the proposition, we

can know that the null space of the S Hess ( f ) is richer compared to the S �( f ) . 

Proposition 1 (Eells and Lemaire [33] ) . A function f : M → R with f ∈ C ∞ ( M ) has zero second derivative, � a � b f | x = 0 , ∀ x ∈ M,

if and only if for any geodesic γ : (−ε , ε ) → M parameterized by arc length s, there exists a constant c γ depending on γ such

that 

∂ 

∂s 
f (γ (s )) = c γ ∀ − ε < s < ε (3) 

Here, the functions f , which is called the geodesic functions, satisfy the condition 

∂ 
∂s 

f (γ (s )) = const . It corresponds to

the linear map relationships in the Euclidean space. 

Owing to the null space of the Laplacian regularizer S �( f ) are constant functions with regard to the geodesic distance

[29] , thus it does not extrapolate exactly for unseen data or poor extrapolation capability. However, the relationship between
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Fig. 1. The framework of the multi-layer HesGCN model for semi-supervised classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the geodesic distance and the null space of the S Hess ( f ) is linear, i.e. geodesic functions f exist, so the S Hess ( f ) can fit the data

that beyond data points perfectly. In other words, due to the richer null space of the S Hess ( f ), Hessian can better describe

the local geometry of data. Fig. 2 shows the differences of the graph Laplacian and graph Hessian in the local geometry

preserving or the null space description of data. Thus, it can get the richer structure information of the data. GCN can

extract the richer sample features by fusing the richer structure information and feature information of the data. 

So far, Liu et al. [36] exploited the Hessian to better describe the intrinsic manifold structure of the data. Liu and Tao

[37] proposed multiview Hessian regularization to exploit the complementary information of the different view. Feng et al.

[38] explored graph Hessian matrix to encode the data manifold and proposed Hessian regularized multitask dictionary

learning for remote sensing image recognition. 

In the following, we briefly describe the computational process of the Hessian. First, we construct the k nearest neighbor

matrix A 

i for each sample. Then, we get the tangent coordinates U of the sample through the singular value decomposition

on A 

i . Next, we obtain a Hessian matrix Hes i through the least-squares estimation about U. Finally, we get a symmetric

Hessian matrix Hes ij by the accumulation of the Hes i . The detailed process can be found in [36,37] . 

2.2. Spectral graph Laplacian convolutions 

Recently, a new model, i.e. GCN [26] , has caused wide public concern in the graph structured data representation and

classification. GCN generalized the convolutional neural network from the regular spatial structure data to the irregular

graph structured data. Now, we briefly describe the related works of the GCN model. 

Hammond et al. [39] proposed the initial definition of the spectral convolutions on graph domain, which is equal to

the convolution of the signal X and spectral graph filter g θ . However, this method is only applicable for the small graph

structured data because of the eigendecomposition of the graph Laplacian. To solve the above problem, Defferrard et al.

[39] optimized this method by introducing the Chebyshev polynomials. Finally, the definition used the following form: 

g θ (L ) � X = 

K ∑ 

K=0 

θK T K ( 
−→ 

L ) X (4)

Here, Defferrard et al. [39] used the normalized graph Laplacian to describe the manifold structure of the data, i.e. L =
I N − D 

− 1 
2 AD 

− 1 
2 , D ii = 

∑ 

j A i j . The A expresses the adjacent relationships matrix and the I N represents the identity matrix.
−→ 

L is calculated by the 
−→ 

L = 

2 
λmax 

L − I N . λmax is the graph Laplacian’s largest eigenvalue. θ is the parameters matrix of the

spectral graph filter. This definition reduced the computational complexity of the model for the large graph structured data.

In addition, it considered the K-hop area of each sample. Defferrard et al. [39] constructed the model by the spectral graph

Laplacian convolutions with K-order polynomials and provided the proof process of the above mentioned definition. 

To further reduce the model’s computational complexity and the radius of the receptive field, Kipf and Welling [26] only

used the direct neighborhood of each node in each convolution layer, i.e. K = 1 . Finally, it proposed the linear layer-wise

aggregate rule according to the one-order spectral graph convolutions, i.e. 

H 

(L +1) = σ ( 
−→ 

D 

− 1 
2 −→ 

A 

−→ 

D 

− 1 
2 

H 

(L ) W 

(L ) ) (5)
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Fig. 2. Differences of the semi-supervised regression for fitting two points on the one-dimensional spiral by respectively utilizing graph Laplacian and 

graph Hessian matrix to preserve the manifold structure information of data distributions. In the local geometry preserving of data, graph Laplacian always 

biases the solution towards a constant function which cannot extrapolate exactly to unseen data. Different from graph Laplacian, graph Hessian varies 

linearly with the geodesic distance which can fit the data perfectly. 

 

 

 

 

 

 

 

 

Here, σ is an activation function. At present, the commonly-used σ is rectified linear unit function (RELU), i.e. f (x ) =
max (0 , x ) . 

−→ 

D 

− 1 
2 −→ 

A 

−→ 

D 

− 1 
2 

expresses the structure information based on the graph Laplacian matrix, 
−→ 

D ii = 

∑ 

j 

−→ 

A i j . 
−→ 

A = A + I N 

are the spatial adjacency relationships matrix including self-connections. H 

( L ) are the input sample features of each con-

volution layer. H 

(L +1) are the output sample features that fuse the underlying graph structure information with the input

sample features. A multi-layer spectral graph convolutions-based model can be built by stacking the layer-wise aggregate

rule, which is named GCN [26] . 

3. Spectral graph Hessian convolutions 

In this section, first of all we describe the motivation of our proposed convolution layer rule, i.e. we generalize the

spectral graph Laplacian convolutions to the spectral graph Hessian convolutions by utilizing the Hessian matrix to preserve

the manifold structure of the samples. And then, we introduce a novel convolution layer rule by optimizing the one-order

approximation of the spectral graph Hessian convolutions. In the following, we introduce the works of the proposed spectral

graph Hessian convolutions in detail. 
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Fig. 3. Recognition accuracy of all classes in the Citeseer database. 

Table 2 

The experiment datasets. 

Datasets Samples Classes Citation-Links Dimensions 

Pubmed 19,717 3 44,338 500 

Citeseer 3327 6 4732 3703 

Cora 2708 7 5429 1433 

NELL 65,755 210 266,144 5414 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GCN fused the manifold structure relationships based on the graph Laplacian in the convolution process of each layer.

Because the poor null space of the graph Laplacian, it is unable to accurately describe the manifold structure of the samples,

i.e. GCN cannot learn the most representative sample features in the imbedded process of the structure relationships and

feature information. To overcome this problem, we describe the space manifold structure information by substituting the

Hessian matrix for the graph Laplacian. And then, we make an extension for the spectral convolutions on graph domain and

get a novel definition, i.e. spectral graph Hessian convolutions. 

g θ (Hes ) � X = 

K ∑ 

K=0 

θK T K ( 
−→ 

Hes ) X (6)

Here, Hes denotes the graph Hessian matrix. In addition, in the computational process of the Hessian, we exploit the Eu-

clidean distance-based k-Nearest Neighbor method to calculate A . 
−→ 

Hes = 

2 
λmax 

Hes − I N . λmax expresses the graph Hessian Hes

matrix’s the biggest eigenvalue. T K ( 
−→ 

Hes ) can be shown through the following form: T 0 ( 
−→ 

Hes ) = I N , T 1 ( 
−→ 

Hes ) = 

−→ 

Hes , T k ( 
−→ 

Hes ) =
2 
−→ 

Hes T k −1 ( 
−→ 

Hes ) − T k −2 ( 
−→ 

Hes ) . In addition, because the Hessian and Laplacian matrix have been calculated in pre-processing,

Eqs. (6) and (4) has the same computation complexity O ( K | ε|). 

To increase the computational efficiency of the HesGCN model and inspired by the experience of the deep learning,

we also use the one-order localized approximation of the spectral graph Hessian convolutions, i.e. K = 1 . (In other words,

spectral graph Hessian convolutions with one-order polynomial can well capture the structure information between nodes).

In addition, with the diversification of adjacent relationships matrix A computing methods and the differences of different
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Fig. 4. Recognition accuracy of each class in the Citeseer database, including Agents, AI, DB, IR, ML, HCI. Each subfigure corresponds on single class. 
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Fig. 5. Recognition accuracy of all classes in the Cora database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

datasets, λmax = 2 is not optimal. Thus, the definition can be written the following form and it is named HesGCN-1. 

g θ (Hes ) � X = θ0 X + θ1 

(
2 

λmax 
Hes − I N 

)
X (7)

Here, the above definition need two filter parameters θ0 and θ1 in each convolution layer. However, in the practice,

the successive convolution of this filter will cause the overfitting and increase the operation numbers of the model. To

surmount the above problem, we optimize the method as the following expression. It is called HesGCN, which is known as

the convolution layer rule. 

Z = g θ (Hes ) � X = θ
(

2 

λmax 
Hes − I N 

)
X (8)

In this definition, the 2 
λmax 

Hes − I N denotes the Hessian-based samples structure information matrix, which is an N × N

symmetric matrix. X is the sample input feature matrix in each layer. Z is the extracted sample feature information. 

4. Multi-layer Hessian GCN 

Based on Eq. (8) , our proposed convolution layer rule f ( X, W, Hessian ) is also defined as the following expression, i.e. 

H 

(L +1) = σ
((

2 

λmax 
Hes − I N 

)
H 

(L ) W 

(L ) 
)

(9)

Fig. 1 describes the basis model framework of multi-layer HesGCN for semi-supervised classification. In this paper, to

validate the performance of our proposed method, we use the convolution layer rule to design a two-layer HesGCN networks

model. First, we need to do some preparatory work, i.e. the structure information matrix 
−→ 

B = 

2 
λmax 

Hes − I N . And then, we

use the following expression for the convolution of the first layer. 

H 

(1) = RELU( 
−→ 

B H 

(0) W 

(0) ) (10)

In the first layer, it makes a learning for the feature information H 

(0) and structure information 

−→ 

B simultaneously by the

convolution. Specially, H 

(0) is the initial sample feature matrix. W 

(0) is the networks model weight parameters of the first

layer. We also use the most powerful RELU function. After the first layer, HesGCN can extract the sample features of the first

layer, i.e. H 

(1) . 
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We use the output H 

(1) of the first convolution layer to constitute the sample input matrix of the second layer. The

convolution operation of the second layer is same as the last layer, which also need a preparatory work 
−→ 

B . And then, we

get the network form of this layer, i.e. 

H 

(2) = 

−→ 

B H 

(1) W 

(1) (11) 

Here, W 

(1) expresses the weight parameter matrix in the second layer. By the convolution operation of this layer, we can

get the final sample features, i.e. H 

(2) . It makes a fusion for the input sample H 

(1) and local geometry structure information−→ 

B . 

After the convolution operation of the two layer, the final part is to make a prediction for the sample, i.e. the classifier

uses the training data with given category to learn classification rules, and then predicts the unknown data. In this paper, we

use the Softmax classifier, which is a generation of the logistic function. It compresses a k-dimensional vector Z containing

any real number into another k-dimensional real vector σ ( Z ), so that the range of each element in the vector is between

zero and one that the sum of all elements is 1. The Softmax function is given through the following form, i.e. 

f (Z j ) = 

e Z j ∑ n 
i =1 e 

Z i 
(12) 

Here, we take the final sample features as the input of the Softmax function, i.e. H 

(2) . To get the best classification

performance of the model, we use the cross entropy loss function to measure the error of the model, i.e. 

C = −
∑ 

K 

y K log Z K (13) 

Here, the Z K denotes probability vector matrix, i.e. the output of the Softmax function. y K is the true label informa-

tion of the sample. In addition, the networks weight W 

(0) and W 

(1) are updated through the gradient descent method. We

summarize the experiment process of the two-layer HesGCN in Algorithm 1 . 

Algorithm 1 Two-layer Hessian GCN model. 

Input : Data X 

Parameter : Dropout rate, learning rate etc. 

Output : Mean classification accuracy 

1: Construct adjacency matrix A between data X. 

2: Compute structure information 

−→ 

B . 

3: Initialize the hyperparameters. 

4: for j = 0 → k − 1 

5: H 

(1) = RELU( 
−→ 

B H 

(0) W 

(0) ) 

6: H 

(2) = 

−→ 

B H 

(1) W 

(1) 

7: until convergence 

8: Get the optimal W 

(0) and W 

(1) . 

9: Return the mean classification accuracy of data. 

5. Experiments 

In this section, to demonstrate the effectiveness of the proposed HesGCN, we utilize the HesGCN model for semi-

supervised classification on four real-life datasets including Citeseer [40] , Cora [41] , Pubmed [42] and NELL [43] . And then

we make the comparison between it and many state-of-the-art algorithms, such as GCN [26] , HyperGCN [28] , graph at-

tention network (GAT) [42] and so on. In the following, we give a detailed description of the experiment datasets, the

experiment parameters setting and the experiment results of HesGCN in turn. 

5.1. Datasets 

The Citeseer [40] dataset consists of 3327 scientific publications from six classes, such as Agents, ML, HCI, AI, DB and

IR. Each scientific publication contains 3703 different words, which is described by the number zero and one. This dataset

contains 4732 citation relationships between the different scientific publications. 

The Cora [41] dataset contains 2708 scientific books collected from seven categories. The category attributes of the Cora

contain case-based, rule-learning, theory, genetic-algorithms, neural-networks, probabilistic-methods and reinforcement- 

learning. Each book is described by 1433 distinct words. There consists of 5429 citation links between 2708 publications. 

The Pubmed [42] dataset is composed of 19,717 diabetes publications with three class attributes including diabetes mel-

litus type 2, diabetes mellitus experimental and diabetes mellitus type 1. The size of each publication is 500-dimensional

vectors. The citation relationships of all diabetes books are 44,338. 

The NELL [43] dataset consists of totally 65,755 nodes collected from the knowledge graph [44] . It is divided into 210

categories. Each node has the 5414 dimensions features. The briefly description of all datasets are shown in Table 2 . 
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Fig. 6. Recognition accuracy of each class in the Cora database, including Theory, Case-based, Genetic-algorithms, Neural-networks, Probabilistic-methods, 

Reinforcement-learning, Rule-learning. Each subfigure corresponds on single class. 
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Fig. 7. Recognition accuracy of all classes in the Pumbed database. 

Table 3 

The comparison of HesGCN and different semi-supervised learn- 

ing methods on the Citeseer and Cora dataset. 

Method Citeseer (120) Cora(140) 

Multi-layer Perception 46.5 55.1 

Manifold Regularization 60.1 59.5 

Semi-supervised Embedding 59.6 59 

Chebyshev( K = 2 ) 53.6 49.8 

Chebyshev( K = 3 ) 53.7 50.5 

GAT 59.8 57 

HyperGCN 55 59.4 

HesGCN 60.6 59.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Experiment parameters 

In the experiment, owing to the reason of the hardware, we use the all samples of the Citeseer and Cora datasets, 50 0 0

samples of the Pubmed and NELL databases. The four datasets are divided into three parts, i.e. validation set, testing set

and training set. In addition, the 10 0 0 labeled samples are used for test, the 500 labeled samples are selected for validation

and the remaining are training samples. In the process of the training, we randomly select a certain percentage label rate

samples (20%, 30%, 40%, 50% and 60%) for semi-supervised learning in the Citeseer and Cora datasets. For Pubmed and NELL

datasets, the 10 %, 15%, 20%, 25% and 30% samples are selected as labeled data. 

In the training process of the model, the maximum iteration numbers are 200 epochs. We use the adaptive moment

estimation [45] (Adam) method with a learning rate of 0.01 and 0.1 (NELL) (other three default parameters: β1 = 0 . 9 and

β2 = 0 . 999 —exponential decay rates, ε = 10 −8 —for numerical stability) to optimize the loss function. If the loss values of the

cross entropy loss function in the validation set remain unchanged with ten consecutive times, the HesGCN will stop training

automatically. To increase the rate of convergence, we use the method that proposed in [46] to initialize networks weight.

The L2 regularization parameter with value of 5 × 10 −4 and 5 × 10 −5 (NELL) is used to avoid the overfitting problem. We

also use the following parameters in three datasets: Citeseer: 0.5 (dropout rate) and 32 (hidden units), Cora: 0.5 (dropout

rate) and 32 (hidden units), Pubmed: 0.5 (dropout rate) and 16 (hidden units), and NELL: 0.6 (dropout rate) and 128 (hidden

units). 
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Fig. 8. Recognition accuracy of each class in the Pubmed database, including Diabetes mellitus experimental, Diabetes mellitus type 1, Diabetes mellitus 

type 2. Each subfigure corresponds on single class. 

 

 

 

 

 

 

 

 

 

 

 

5.3. Experiment results 

In this part, we compare the different variants of the HesGCN model with the GCN model. Figs. 3 , 5 , 7 and 9 give

the mean recognition rate of all classes in the Citeseer, Cora, Pubmed and NELL dataset. The x-axis is the different label

rate of the training set and the y-axis is the mean recognition rate of the different database on all classes. In addition, to

better demonstrate the mean recognition performance of the single class for the HesGCN, Figs. 4 , 6 and 8 show the mean

recognition accuracy of the different model on the different class. The y-axis denotes the mean recognition accuracy of each

class. 

Figs. 3 and 4 show the experiment results of the Citeseer database. As we can see in the Fig. 3 that HesGCN outper-

forms the GCN model especially when the label rate is low. In addition, we can find that the mean recognition accuracy

of the three methods are on the increase, when the label rate of the samples increases. We also observe that, under most

conditions, the HesGCN performs better than other methods in some classes, such as Agents, HCI, DB and ML, as shown in

Fig. 4 . 

Fig. 5 illustrates the mean recognition rate with the standard deviation in the Cora database. It shows that HesGCN gets

the best performance in contrast to the GCN and HesGCN-1. In particular, it also reveals the effectiveness of the optimized
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Fig. 9. Recognition accuracy of all classes in the NELL database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method that our proposed. The each subfigure of the Fig. 6 corresponds the mean recognition accuracy of the single class.

And then, in the majority of cases, the HesGCN model obtains an excellent performance. 

From the experimental results of the Figs. 7 and 9 over all the categories, both methods achieve a higher recognition

accuracy. The best algorithm of the above-mentioned methods is HesGCN model. We can find that the lower the label rate

of training samples, our proposed model performs far better compared to other methods. From the line chart of the single

class with the standard deviation, i.e. Fig. 8 , we can see that in the Diabetes mellitus experimental, Diabetes mellitus type

1 and Diabetes mellitus type 2, our proposed HesGCN outperforms HesGCN-1 and GCN in most cases. 

In this section, we compare many state-of-the-art semi-supervised learning methods, such as Multi-layer Perception [47] ,

Manifold Regularization [21] , Semi-supervised Embedding [22] , Chebyshev(K = 2) [48] , Chebyshev(K = 3) [48] , HyperGCN

[28] and graph attention network (GAT) [42] . Under the circumstances of 120 (Citeseer) and 140 (Cora) labeled samples of

the training set, we report the average recognition rate with 100 random runs in Table 3 . From the results of the Figs. 3,

5, 7, 9 and Table 3 , our proposed HesGCN performs better than the above mentioned methods. Compared with GCN and

HesGCN-1, these data prove the effectiveness of the optimization method that our proposed, i.e. from Eqs. (5) and (7) to

Eq. (8) . Compared with other models, we can know that HesGCN can learn richer sample features to improve its classi-

fication performance by the effective convolution fusion of the Hessian-based structure information and the original data

information. In addition, it also indicates the richer null space of the Hessian, i.e. Hessian can better describe the local

geometry of data compared with graph Laplacian (from Eqs. (1) to (2) ). 

6. Conclusion 

In the past few years, many MSSL algorithms have achieved great success in the problems of the graph structured data

representation and classification. However, how to choose the appropriate expression methods of data manifold structure

and better exploit these manifold structure information is still a significant problem. In this paper, we introduce a new form

of the spectral graph theory, i.e. spectral graph Hessian convolutions, by replacing the graph Laplacian with the Hessian

matrix. And then, we get a novel linear convolution layer rule by simplifying and deducing the one-order polynomial of

the spectral graph Hessian convolutions. Finally, we propose the Hessian graph convolutional networks for semi-supervised

classification by stacking the proposed convolution layer rule. Due to the richer null space of the Hessian in contrast to

Laplacian, HesGCN can get the most representative sample features and increase the classification performance of the model.

Extensive experiments results show that HesGCN outperforms and more stable than the popular GCN. 
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